Refine Your Search

Topic

Search Results

Technical Paper

Emission Reduction Technologies for the Future Low Emission Rail Diesel Engines: EGR vs SCR

2013-09-08
2013-24-0087
The EU emission standards for new rail Diesel engines are becoming even more stringent. EGR and SCR technologies can both be used to reduce NOx emissions; however, the use of EGR is usually accompanied by an increase in PM emissions and may require a DPF. On the other hand, the use of SCR requires on-board storage of urea. Thus, it is necessary to study these trade-offs in order to understand how these technologies can best be used in rail applications to meet new emission standards. The present study assesses the application of these technologies in Diesel railcars on a quantitative basis using one and three dimensional numerical simulation tools. In particular, the study considers a 560 kW railcar engine with the use of either EGR or SCR based solutions for NOx reduction. The NOx and PM emissions performances are evaluated over the C1 homologation cycle.
Technical Paper

The Volvo 3-Litre 6-Cylinder Engine with 4-Valve Technology

1990-09-01
901715
During 1990, the Volvo Car Corporation will Introduce a new In-line six-cylinder engine featuring three litre displacement, twin overhead camshafts and 24 valves, designated the B6304F. The engine has been designed and adapted for Volvo's top-of-the-line model 960, and it has been developed to meet the market's high demands on comfort, performance, reliability, economy and environmental friendliness. The engine has been designed and manufactured with the help of advanced CAE technology. The engine structure consists of five basic aluminium parts. This construction contributes to the low engine weight of 182 kg including auxiliary units, oil and wiring. The engine's gas flow has been optimized with the help of data simulation and laser measurement technology so as to ensure efficient utilization of energy. Fuel injection and ignition timing are regulated and controlled by an advanced electronic control system, the Bosch Motronic 1.8.
Technical Paper

Modeling the Effect of Injection Schedule Change on Free Piston Engine Operation

2006-04-03
2006-01-0449
In this study, the effects of varying the start of injection in a Free Piston Engine (FPE) have been investigated, using the KIVA-3V CFD code. In order to simulate the FPE the code has been modified by replacing the conventional crank shaft controlled piston motion by a piston motion profile calculated using a MATLAB/SIMULINK model. In this model, the piston motion is controlled by Newton's second law and the combustion process is represented by a simplified model based on ignition delay integrals and Wiebe functions. The results were tuned using predictions from the SENKIN software which are based on the detailed chemical kinetics mechanism of a Diesel oil surrogate represented by a blend of the main aliphatic (70% n-heptane) and aromatic (30% toluene) components. In order to help analyze the emission formation resulting from the HCCI/PPCI combustion modes in the engine, a special approach based on the temperature-equivalence ratio maps has been developed.
Technical Paper

Development Experience of a Multi-Cylinder CCVS Engine

1995-02-01
950165
A system for stratifying recycled exhaust gas (EGR) to substantially increase dilution tolerance has been applied to a multi-cylinder port injected four-valve gasoline engine. This system, dubbed Combustion Control through Vortex Stratification (CCVS), has shown greatly improved fuel consumption at stoichiometric conditions whilst retaining ULEV compatible engine-out NOx and HC emission levels. A production feasible variable air motion system has also been assessed which enables stratification at part load with no loss of performance or refinement at full load.
Technical Paper

Measurements of Fuel Film Thickness in the Inlet Port of an S.I. Engine by Laser Induced Fluorescence

1995-10-01
952483
Fuel wetting in the inlet port of a gasoline engine was studied using Laser-Induced Fluorescence (LIF). The measurements were done directly on the metal wall surface. Quantitative results were be obtained using a special calibration procedure. The sensitivity of the technique was found to correspond to a fuel layer thickness in the order of 1 μm, and the accuracy was estimated to be approx. 10 %. The engine was run on iso-octane, and in order to obtain fluorescence a dopant (3-pentanone) was added to the fuel. Laser light with a wave length of 266 nm was generated by frequency doubling the light from a Nd-YAG laser in two steps. A laser sheet was directed into the intake port and the fuel layer on the wall could be studied along a line on the bifurcation wall. The fluorescence light was detected with an intensified diode-array camera. The measurements from the fuel film thickness were compared with measurements of the total fuel film mass using an A/F response method.
Technical Paper

Cyclic Variation in an SI Engine Due to the Random Motion of the Flame Kernel

1996-05-01
961152
This paper reports an investigation of the association between flame kernel movement and cyclic variability and assesses the relative importance of this phenomenon, with all other parameters that show a cyclic variability held constant. The flame is assumed to be subjected to a “random walk” by the fluctuating velocity component of the flow field as long as it is of the order of or smaller than the integral scale. However, the mean velocity also imposes prefered convection directions on the flame kernel motion. Two-point LDA (Laser Doppler Anemometry) measurements of mean velocity, turbulence intensity and integral length scale are used as input data to the simulations. A quasi-dimensional computer code with a moving flame center position is used to simulate the influence of these two components on the performance of an S I engine with a tumble-based combustion system.
Technical Paper

Experimental Investigation of the Effect of Needle Opening (NOP) Pressure on Combustion and Emissions Formation in a Heavy Duty DI Diesel Engine

2004-10-25
2004-01-2921
This paper presents an investigation of the effects of varying needle opening pressure (NOP) (375 to 1750 bar), engine speed (1000 rpm to 1800 rpm), and exhaust gas recirculation (EGR) (0% to 20 %) on the combustion process, exhaust emissions, and fuel consumption at low (25 %) and medium (50 %) loads in a single cylinder heavy duty DI diesel research engine with a displacement of 2.02 l. The engine was equipped with an advanced two-actuator E3 Electronic Unit Injector (EUI) from Delphi Diesel, with a maximum injection pressure of 2000 bar. In previous versions of the EUI system, the peak injection pressure was a function of the injection duration, cam lift, and cam rate. The advanced EUI system allows electronic control of the needle opening and closing. This facilitates the generation of high injection pressures, independently of load and speed.
Technical Paper

Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR

2005-10-24
2005-01-3836
The objective of the study presented here was to examine the possibility of simultaneously reducing soot and nitrogen oxide (NOx) emissions from a heavy duty diesel engine, using very high levels of EGR (exhaust gas recirculation). The investigation was carried out using a 2 litre DI single cylinder diesel engine. Two different EGR strategies were examined. One entailed maintaining a constant charge air pressure with a varied exhaust back pressure in order to change the amount of EGR. In the other strategy a constant pressure difference was maintained over the engine, resulting in different equivalence ratios at similar EGR levels. EGR levels of 60 % or more significantly reduced both soot and NOx emissions at 25 % engine load with constant charge air pressure and increasing exhaust back pressure. However, combustion under these conditions was incomplete, resulting in high emissions of carbon monoxide (CO), unburned hydrocarbons (HC) and high fuel consumption.
Technical Paper

Modeling Gasoline Spray-Wall Interactions and Comparison to Experimental Data

2004-10-25
2004-01-3003
The effects of a gasoline spray impinging on a heated surface were investigated under simulated engine conditions in an earlier study. The data from the experimental investigation have now been compared to results obtained from Computational Fluid Dynamic (CFD) simulations generated using several different numerical models for spray-wall impingement found in the literature. It was found that the models based on single-drop experiments do not predict the outcome of spray impingement well in some respects. Their major drawback was that the predicted diameter distributions of the reflected drops in the secondary spray were shifted downwards from the measured drop size distributions. The tested models predicted the normal velocity component relative to the wall well. However, they were less good at capturing the tangential velocity component relative to the wall.
Technical Paper

Effects of Injector Parameters on Mixture Formation for Multi-Hole Nozzles in A Spray-Guided Gasoline DI Engine

2005-04-11
2005-01-0097
This paper focuses on ways of improving the spray formation from spray-guided multi-hole gasoline direct injection injectors. Work has been done both experimentally using laser diagnostic tools and numerically using Computational Fluid Dynamics. Laser Induced Exciplex Fluorescence (LIEF) measurements in a constant pressure spray chamber and optical engine measurements have shown that injectors with 6-hole nozzles and 50-degree umbrella angles are unsuitable for stratified combustion because they produce steep air-fuel ratio gradients and create a spray with overly-deep liquid fuel penetration as well as presence of liquid fuel around the spark plug. In order to study injector performance, numerical calculations using the AVL FIRE™ CFD code were performed. The numerical results indicate that by increasing the injector umbrella angle, the extent of piston wall wetting can be decreased.
Technical Paper

Heavy-Duty Diesel Combustion with Ultra-Low NOx and SOOT Emissions - A Comparison Between Experimental Data and CFD Simulations

2005-04-11
2005-01-0380
Experiments were conducted with a single cylinder heavy duty research engine, based on the geometry of a Volvo Powertrain D12C production engine. For these tests the engine was configured with a low compression ratio, low swirl, common rail fuel injection system and an eight-orifice nozzle. The combustion process was visualized by video via an inserted endoscope. From the resulting images temperatures were evaluated with the two-color method. In addition, the combustion and emission formation were simulated using the multiple flamelet concept implemented in the commercial CFD code STAR-CD. The models used in this paper are considered state-of-the-art. The purpose of this paper is to demonstrate the possibilities offered by combining several methods in the evaluation of novel engine concepts. Therefore, results from the optical measurements, the CFD simulations and global emission experimental data were compared.
Technical Paper

Modelling Gasoline Spray-wall Interaction -a Review of Current Models

2000-10-16
2000-01-2808
A literature survey was carried out to examine the advances in knowledge regarding spray impingement on surfaces over the last five years. Published experiments indicate that spray impingement is controlled by various spray parameters, surface conditions, and liquid properties. One disadvantage of the published results is that the experiments have mainly been conducted with water droplets or diesel fuel, often at atmospheric conditions. A sensitivity analysis was performed for one common impingement model. The purpose was to investigate how the model described different phenomena when different parameters were changed, including wall temperature, wall roughness and injection velocity of the spray. The model tested showed sensitivity to surface roughness, whereas changes in wall temperature only resulted in increased evaporation from the surface. The increase of injection velocity resulted in a decrease of fuel on the wall by 70%.
Technical Paper

Comparison of Long-Chain Alcohol Blends, HVO and Diesel on Spray Characteristics, Ignition and Soot Formation

2019-01-15
2019-01-0018
Spray characteristics of fossil Diesel fuel, hydrotreated vegetable oil (HVO) and two oxygenated fuel blends were studied to elucidate the combustion process. The fuels were studied in an optically accessible high-pressure/high-temperature chamber under non-combusting (623 K, 4.69 MPa) and combusting (823 K, 6.04 MPa) conditions. The fuel blends contained the long-chain alcohol 2-ethylhexanol (EH), HVO and either 20 vol.% Diesel or 7 vol.% rapeseed methyl ester (RME) and were designed to have a Diesel-like cetane number (CN). Injection pressures were set to 120 MPa and 180 MPa and the gas density was held constant at 26 kg/m3. Under non-combusting conditions, shadow imaging revealed the penetration length of the liquid and vapor phase of the spray. Under combusting conditions, the lift-off length and soot volume fraction were measured by simultaneously recording time-resolved two-dimensional laser extinction, flame luminosity and OH* chemiluminescence images.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
Technical Paper

A Numerical Investigation of Gas Exchange Modeling and Performance Prediction of a Camless Two-Stroke Hydrogen Engine

2023-04-11
2023-01-0232
Heavy-duty vehicles are primarily powered by diesel fuel, emitting CO2 emissions regardless of the exhaust after-treatment system. Contrastingly, a hydrogen engine has the potential to decarbonize the transportation sector as hydrogen is a carbon free, renewable fuel. In this study, a multi-physics 1D simulation tool (GT-Power) is used to model the gas exchange process and performance prediction of a two-stroke hydrogen engine. The aim is to establish a maximum torque-level for a four-stroke hydrogen engine and then utilize different methods for two-stroke modeling to achieve similar torque by optimizing the gas exchange process. A camless engine is used as base, enabling the flexibility to utilize approximately square valve lift profiles. The preliminary step is the GT-Power model validation, which has been done using diesel and hydrogen engines (single-cylinder heavy-duty) experiments at different operating points (871 rpm, 1200 rpm, 1259 rpm, and 1508 rpm).
X